An electrochemical cell is a device that can generate electrical energy from chemical reactions or use electrical energy to initiate chemical reactions. Electrochemical cells that generate an electric current are known as voltaic or galvanic cells, whereas those that generate chemical reactions, such as electrolysis, are electrolytic cells. A standard 1.5 volt cell intended for consumer use is a common example of a galvanic cell. A battery is made up of one or more cells that are connected in parallel, series, or series-and-parallel fashion.
In chemistry, a cell is used to convert chemical energy to electrical energy, or for the purpose of energy conversion. Chemical reactions take place inside the cells, and as a result, electrical current flows. In this article, we will go over two types of cells in-depth: galvanic cells and electrolytic cells. In galvanic cells, chemical energy is converted into electrical energy, and electrical energy is converted back into chemical energy in electrolytic cells. These electrochemical cells are used for a variety of purposes.
Galvanic cells and Voltaic cells are examples of cells that can generate an electric current as a result of chemical reactions. Electrolytic cells, on the other hand, are the cells that cause chemical reactions when an electric current is passed through them. Electrochemical cells are made up of two half-cells, each of which contains an electrode dipped in an electrolyte. Both half cells can use the same electrolyte. These half cells are linked by a salt bridge, which serves as a platform for ionic contact between them without allowing them to mix. A salt bridge is a piece of filter paper that has been dipped in a potassium nitrate or sodium chloride solution.
A dry cell is a type of electric battery that is commonly used in household and portable electronic devices. A battery is a device that converts chemical energy into electrical energy by using one or more electrochemical cells. A dry cell is one of the electrochemical cells developed by “German scientists Carl Gassner” in 1886, following Georges Leclanche’s development of wet zinc-carbon batteries in 1866. Yai Sakizo, a Japanese inventor, invented modern dry cells in the year 1887.
Dry cell batteries, which range from large flashlight batteries to small flashlight batteries and are mostly used in wristwatches or calculators, are the most commonly used batteries today. A dry cell is an electrochemical cell made up of low moisture immobilized electrolytes in the form of a paste that prevents the electrolytes from flowing. As a result, it is easily transportable.
A dry cell is a device that uses chemical reactions to generate electricity. When the cell’s two electrodes are connected by a closed path, the cell forces electrons to flow from one end to the other. In a closed circuit, the flow of electrons causes current to flow. Electrons flow from one end to the other using chemical reactions.
Because of the high potential, more electrons flow when two or more cells are connected with the correct polarity. This is referred to as a battery. A battery can be used to generate a range of voltages ranging from 1.5 V to 100 V. Using power electronic converters such as chopper circuits, the output DC voltage of the battery can also be regulated to different levels.
More than a century ago, electrochemical or galvanic cells were introduced as a tool for studying the thermodynamic properties of fused salts. Daniel’s cell is a galvanic cell that converts chemical energy to electrical energy. Copper ions are reduced at the cathode and zinc ions are oxidized at the anode in Daniel’s cell.
Daniel cell reactions at the cathode and anode are as follows:
At cathode: Cu 2+ + 2e– → Cu
At anode: Zn → Zn2+ + 2e–
An electrolytic cell is an electrochemical device that uses electrical energy to promote a non-spontaneous redox reaction. Electrolytic cells are electrochemical cells that can be used to electrolyze specific compounds. Water, for example, can be electrolyzed (using an electrolytic cell) to produce gaseous oxygen and gaseous hydrogen. This is accomplished by utilizing the flow of electrons (into the reaction environment) to overcome the non-spontaneous redox reaction’s activation energy barrier.
The following are the three primary components of electrolytic cells:
The electrolyte serves as a medium for electron exchange between the cathode and the anode. Water (containing dissolved ions) and molten sodium chloride are two common electrolytes used in electrolytic cells.
With the help of an electrolytic cell, molten sodium chloride (NaCl) can be electrolyzed, as shown below. In this experiment, two inert electrodes are immersed in molten sodium chloride (which contains dissociated Na+ cations and Cl– anions).
When an electric current is passed through the circuit, the cathode becomes electron-rich and acquires a negative charge. Positively charged sodium cations are now drawn to the negatively charged cathode. As a result, metallic sodium is formed at the cathode. At the same time, chlorine atoms are drawn to the positively charged cathode. As a result, chlorine gas (Cl2) is produced at the anode (which is accompanied by the liberation of 2 electrons, finishing the circuit).
Electrolytic cells' cell reactions are non-spontaneous, whereas Galvanic cells' cell reactions are spontaneous. Galvanic cells produce electrical energy from chemical reactions, whereas electrolytic cells produce non-spontaneous redox reactions in response to electrical energy input.
The cathode, anode, and electrolyte are the three main components of electrolytic cells. In electrolytic cells (as in most electrochemical cells), oxidation takes place at the anode and reduction takes place at the cathode.
The cathode of an electrochemical cell is where reduction takes place. A positive (+) sign is commonly used to represent it. Electrons move from the anode to the cathode. The anode is the electrode in electrochemical cells where oxidation takes place. It is denoted by a minus (-) sign.