Sunil can do a piece of work in 10 days and Nikhil alone can do it in 12 days. Nikhil works it for 3 days and then leaves. Sunil alone can finish the remaining work in

# Sunil can do a piece of work in 10 days and Nikhil alone can do it in 12 days. Nikhil works it for 3 days and then leaves. Sunil alone can finish the remaining work in

1. A

$6\text{\hspace{0.17em}\hspace{0.17em}}\left(\frac{1}{2}\text{\hspace{0.17em}}\right)\text{\hspace{0.17em}}days$

2. B

$7\text{\hspace{0.17em}\hspace{0.17em}}\left(\frac{1}{2}\text{\hspace{0.17em}}\right)\text{\hspace{0.17em}}days$

3. C

8 days

4. D

9 days

Fill Out the Form for Expert Academic Guidance!l

+91

Live ClassesBooksTest SeriesSelf Learning

Verify OTP Code (required)

### Solution:

Work done by Sunil  in 1 day $=\frac{100%}{10}\text{\hspace{0.17em}\hspace{0.17em}}⇒10%$

Work done by Nikhil  in 1 day $=\frac{100%}{12}\text{\hspace{0.17em}\hspace{0.17em}}⇒\frac{25}{3}%$

Work done by Nikhil  in 1 day $=\frac{100%}{12}\text{\hspace{0.17em}\hspace{0.17em}}⇒\frac{25}{3}%$

Work done by Sunil  in 3 days $=\frac{25}{3}×3\text{\hspace{0.17em}\hspace{0.17em}}⇒25%$

$75%$ of  work done by Sunil $=75×\frac{1}{10}=7.5\text{\hspace{0.17em}\hspace{0.17em}}days$

Or

Sunil's one day work = $\frac{1}{10}$

Nikhil's one day work = $\frac{1}{12}$

Nikhil's 3 days work = $\frac{3}{12}=\frac{1}{4}$

Remaining work ( $\frac{3}{4}th$) can finish by Sunil in

$1\to \frac{1}{10}$  +91

Live ClassesBooksTest SeriesSelf Learning

Verify OTP Code (required)