∫01 dxex+e−xdx is equal to

01dxex+exdx is equal to

  1. A

    π4

  2. B

    tan1eπ4

  3. C

    tan1e

  4. D

    π4tan1e

    Register to Get Free Mock Test and Study Material

    +91

    Verify OTP Code (required)

    I agree to the terms and conditions and privacy policy.

    Solution:

    01dxex+ex=01exe2x+1dx Let   t=exdt=exdx =1edtt2+1=tan1t1e =tan1etan1(1)=tan1eπ4

    Chat on WhatsApp Call Infinity Learn

      Register to Get Free Mock Test and Study Material

      +91

      Verify OTP Code (required)

      I agree to the terms and conditions and privacy policy.