A=−1,2,−3,B=5,0,−6,C=0,4,−1. If l,m,n be the direction cosines of the internal angular bisector of∠BAC, then l−m−n=

A=1,2,3,B=5,0,6,C=0,4,1. If l,m,n be the direction cosines of the internal angular bisector ofBAC, then lmn=

  1. A

    28714

  2. B

    22714

  3. C

    38714

  4. D

    12714

    Fill Out the Form for Expert Academic Guidance!l



    +91



    Live ClassesBooksTest SeriesSelf Learning



    Verify OTP Code (required)

    I agree to the terms and conditions and privacy policy.

    Solution:

    The vector along the internal angular bisector of a¯,b¯ isa¯a±b¯b

    Herea¯=AB¯ and b¯=AC¯

    It implies that a¯=6i2j3k and b¯=i+2j+2k

    Hence, the vector along the internal angular bisector of  BAC is a¯a+b¯b=25i+8j+5k21

    Therefore, the direction cosines are25714,8714,5714

    It implies that  lmn=12714

    Chat on WhatsApp Call Infinity Learn

      Talk to our academic expert!



      +91



      Live ClassesBooksTest SeriesSelf Learning



      Verify OTP Code (required)

      I agree to the terms and conditions and privacy policy.