Define F(x) as the product of two realfunctions f1(x)=x,x∈R, and f2(x)=sin⁡1/x; if x≠00; if x=0as follows F(x)=f1(x)f2(x);x≠00;x=0Statement-1: F(x) is continuous on RStatement-2: f1(x) and f2(x) are continuous on R.

# Define as the product of two realfunctions ${f}_{1}\left(x\right)=x,x\in \mathbf{R}$, and as follows $\mathrm{F}\left(x\right)=\left\{\begin{array}{ccc}{f}_{1}\left(x\right){f}_{2}\left(x\right)& ;& x\ne 0\\ 0& ;& x=0\end{array}\right\$Statement- is continuous on RStatement-) and ${f}_{2}\left(x\right)$ are continuous on.

1. A

STATEMENT-1 is True, STATEMENT-2 is True; STATEMENT-2 is a correct explanation for STATEMENT-1

2. B

STATEMENT-1 is True, STATEMENT-2 is True; STATEMENT-2 is NOT a correct explanation for
STATEMENT-1

3. C

STATEMENT-1 is True, STATEMENT-2 is False

4. D

STATEMENT-1 is False, STATEMENT-2 is True

Register to Get Free Mock Test and Study Material

+91

Live ClassesRecorded ClassesTest SeriesSelf Learning

Verify OTP Code (required)

I agree to the terms and conditions and privacy policy.

### Solution:

Since $|x\mathrm{sin}1/x|\le |x|$ so $\underset{x\to 0}{lim} \mathrm{F}\left(x\right)=0=$

$F\left(0\right)$ thus $F$ is a continuous function. Since $\underset{x\to 0}{lim} \mathrm{sin}1/x$

doesn’t exist so ${f}_{2}$ is not continuous at

## Related content

 Distance Speed Time Formula Refractive Index Formula Mass Formula Electric Current Formula Ohm’s Law Formula Wavelength Formula Electric Power Formula Resistivity Formula Weight Formula Linear Momentum Formula

Talk to our academic expert!

+91

Live ClassesRecorded ClassesTest SeriesSelf Learning

Verify OTP Code (required)

I agree to the terms and conditions and privacy policy.