Search for: For |x|<1,let y=1+x+x2+… to ∞, then dydxis equal to For |x|<1,let y=1+x+x2+… to ∞, then dydxis equal to AxyBx2y2Cxy2Dxy2+y Register to Get Free Mock Test and Study Material +91 Verify OTP Code (required) I agree to the terms and conditions and privacy policy. Solution:∵y=1+x+x2+…∞∴ y=11−x=(1−x)−1On differentiating w.r.t. x, we getdydx=−1(1−x)2(−1)=1(1−x)2∴ dydx−y=1(1−x)2−1(1−x)=1−1+x(1−x)2=x(1−x)2⇒ dydx−y=xy2⇒dydx=xy2+yPost navigationPrevious: If f(x)=cosx⋅cos2x⋅cos4x⋅cos8x⋅cos16x then the value of f′π4 is Next: If sin Y=X sin (a + y), then dydx is equal to Related content JEE Main 2023 Question Papers with Solutions JEE Main 2024 Syllabus Best Books for JEE Main 2024 JEE Advanced 2024: Exam date, Syllabus, Eligibility Criteria JEE Main 2024: Exam dates, Syllabus, Eligibility Criteria JEE 2024: Exam Date, Syllabus, Eligibility Criteria NCERT Solutions For Class 6 Maths Data Handling Exercise 9.3 JEE Crash Course – JEE Crash Course 2023 NEET Crash Course – NEET Crash Course 2023 JEE Advanced Crash Course – JEE Advanced Crash Course 2023