if the surface area of a cube is increasing at a rate of 3⋅6cm2/sec, retaining ifs shape, then the rate of change of its volume (in cm3 / sec), when the length of a side of the cube is 10 cm, is 

if the surface area of a cube is increasing at a rate of 36cm2/sec, retaining ifs shape, then the rate of change of its volume (in cm3 / sec), when the length of a side of the cube is 10 cm, is 

  1. A

    20

  2. B

    10 

  3. C

    18

  4. D

    9

    Register to Get Free Mock Test and Study Material

    +91

    Verify OTP Code (required)

    I agree to the terms and conditions and privacy policy.

    Solution:

    Let the length an edge of the cube at any moment t

    be  x cm. Then, its surface area S and volume V are given by 

    S=6x2 and V=x3

     dSdt=12xdxdt and dVdt=3x2dxdt

     36=12×10dxdt and dVdt=3×102×dxdt

     dxdt=3100 and dVdt=300dxdt dVdt=300×3100=9.

    Chat on WhatsApp Call Infinity Learn

      Register to Get Free Mock Test and Study Material

      +91

      Verify OTP Code (required)

      I agree to the terms and conditions and privacy policy.