If the vertices of a triangle areA1,2,1,B4,3,1,C3,1,5 then  Area of Δ ABC42×cos2A=

If the vertices of a triangle areA1,2,1,B4,3,1,C3,1,5 then  Area of ΔABC42×cos2A=

  1. A

    1

  2. B

    5

  3. C

    10

  4. D

    15

    Fill Out the Form for Expert Academic Guidance!l



    +91



    Live ClassesBooksTest SeriesSelf Learning



    Verify OTP Code (required)

    I agree to the terms and conditions and privacy policy.

    Solution:

    The vertices of a triangle areA1,2,1,B4,3,1,C3,1,5

    The area of the triangle  ABCis12AB¯×AC¯

    HereAB¯=3i+j and AC¯=2ij+4k

    Hence the area of the triangle is 

    12ijk310214=12i4j12+k32=124i12j5k

    Therefore, the area of the triangle is  16+144+252=1852

    And 

    cosA=AB¯AC¯AB¯AC¯=619+14+1+16=51021=542            

    Consider  

    Area of ΔABC42×cos2A=1852×42×542=18510

                 

    Chat on WhatsApp Call Infinity Learn

      Talk to our academic expert!



      +91



      Live ClassesBooksTest SeriesSelf Learning



      Verify OTP Code (required)

      I agree to the terms and conditions and privacy policy.