Search for: If 0<θ,ϕ<π/2 and x=∑n=0∞ sin2nϕ, y=∑n=0∞ cos2nθ and z=∑n=0∞ cosn(θ+ϕ)cosn(θ−ϕ), thenIf 0<θ,ϕ<π/2 and x=∑n=0∞ sin2nϕ, y=∑n=0∞ cos2nθ and z=∑n=0∞ cosn(θ+ϕ)cosn(θ−ϕ), thenAxyz+1=yz-zxBxyz-1=yz+zxCxyz-xy=yz-zxDxyz+1=yz+zx Register to Get Free Mock Test and Study Material Grade ---Class 6Class 7Class 8Class 9Class 10Class 11Class 12 Target Exam JEENEETCBSE +91 Preferred time slot for the call ---9 am10 am11 am12 pm1 pm2 pm3 pm4 pm5 pm6 pm7 pm8pm9 pm10pmPlease indicate your interest Live ClassesRecorded ClassesTest SeriesSelf LearningVerify OTP Code (required) I agree to the terms and conditions and privacy policy. Solution:We have x=11−sin2ϕ=1cos2ϕ,y=11−cos2θ=1sin2θ,Also, cos(θ+ϕ)cos(θ−ϕ)=cos2ϕ−sin2θ=1x−1yAs, 0<cos2ϕ<1,0<sin2θ<1,−1<cos2ϕ−sin2θ<1⇒ −1<1x−1y<1Thus, z=∑n=0∞ 1x−1yn=11−1x−1y=xyxy−y+x⇒ z(xy−y+x)=xy or xyz−xy=yz−xzRelated content USA Full Form – United States of America NRC Full Form – National Register of Citizens Distance Speed Time Formula Refractive Index Formula Mass Formula Electric Current Formula Ohm’s Law Formula Wavelength Formula Electric Power Formula Resistivity Formula