If(1+x)n=C0+C1x+C2x2+…+Cnxn them the value of C0+2C1+3C2+…+(n+1)Cn will be

If(1+x)n=C0+C1x+C2x2++Cnxn them the value of C0+2C1+3C2++(n+1)Cn will be

  1. A

    (n+2)2n1

  2. B

    (n+1)2n

  3. C

    (n+1)2n1

  4. D

    (n+2)2n

    Register to Get Free Mock Test and Study Material

    +91

    Verify OTP Code (required)

    I agree to the terms and conditions and privacy policy.

    Solution:

    Since, x(1+x)n=xC0+C1x2+C2x3++Cnxn+1 

    On differentiating w.r.t. x, we get 

    (1+x)n+nx(1+x)n1=C0+2C1x+3C2x2++(n+1)Cnxn

    Put x = L, we get C0+2C1+3C2++(n+1)Cn

    =2n+n2n1=2n1(n+2)
     

    Chat on WhatsApp Call Infinity Learn

      Register to Get Free Mock Test and Study Material

      +91

      Verify OTP Code (required)

      I agree to the terms and conditions and privacy policy.