If a2+b2+c2=−2 and f(x)=1+a2x1+b2x1+c2x1+a2x1+b2x1+c2x1+a2x1+b2x1+c2x then f(x) is a polynomial of degree

If a2+b2+c2=2 and f(x)=1+a2x1+b2x1+c2x1+a2x1+b2x1+c2x1+a2x1+b2x1+c2x then f(x) is a polynomial of degree

  1. A

    0

  2. B

    1

  3. C

    2

  4. D

    3

    Fill Out the Form for Expert Academic Guidance!l



    +91



    Live ClassesBooksTest SeriesSelf Learning



    Verify OTP Code (required)

    I agree to the terms and conditions and privacy policy.

    Solution:

    Operating C1C1+C2+C3, we get

    f(x)=1+2x+a2+b2+c2x1+b2x1+c2x1+2x+a2+b2+c2x1+b2x1+c2x1+2x+a2+b2+c2x1+b2x1+c2x

         =11+b2x1+c2x11+b2x1+c2x11+b2x1+c2x a2+b2+c2=2

         =11+b2x1+c2x01x0001x  [Operating R2R2R1 and R3R3R1

        =(1)(1x)20=(1x)2

    which is a polynomial of degree 2.

    Chat on WhatsApp Call Infinity Learn

      Talk to our academic expert!



      +91



      Live ClassesBooksTest SeriesSelf Learning



      Verify OTP Code (required)

      I agree to the terms and conditions and privacy policy.