Search for: MathematicsIf a+2 bcosxa−2 bcosy=a2−b2, where a>b>0, then dxdy at π4, π4 isIf a+2 bcosxa−2 bcosy=a2−b2, where a>b>0, then dxdy at π4, π4 isAa−ba+bBa+ba−bC2a+b2a−bDa−2ba+2b Fill Out the Form for Expert Academic Guidance!l Grade ---Class 6Class 7Class 8Class 9Class 10Class 11Class 12 Target Exam JEENEETCBSE +91 Preferred time slot for the call ---9 am10 am11 am12 pm1 pm2 pm3 pm4 pm5 pm6 pm7 pm8pm9 pm10pmPlease indicate your interest Live ClassesBooksTest SeriesSelf LearningLanguage ---EnglishHindiMarathiTamilTeluguMalayalamAre you a Sri Chaitanya student? NoYesVerify OTP Code (required) I agree to the terms and conditions and privacy policy. Solution:a+2bcosxa−2bcosy=a2−b2−2bsinxa−2bcosy+a+2bcosx2bsinydydx=0At π4, π4, −ba−b+a+bb.dydx=0⇒bb−adxdy=−ba+b⇒dxdy=a+ba−b.Related content Area of Square Area of Isosceles Triangle Pythagoras Theorem Triangle Formulae Perimeter of Triangle Formula Area Formulae Volume of Cone Formula Matrices and Determinants_mathematics Critical Points Solved Examples Type of relations_mathematics