If α,β are the roots of ax2+bx+c=0;α+h,β+h are the roots of px2+qx+r=0; and D1,D2 the respective discriminants of these equation  then D1:D2=

If α,β are the roots of ax2+bx+c=0;α+h,β+h are the roots of px2+qx+r=0; and D1,D2 the respective discriminants of these equation  then D1:D2=

  1. A

    a2p2

  2. B

    b2q2

  3. C

    c2r2

  4. D

    None of these 

    Register to Get Free Mock Test and Study Material

    +91

    Verify OTP Code (required)

    I agree to the terms and conditions and privacy policy.

    Solution:

    Let, A=α+h and B=β+h, then

     AB=(α+h)(β+h)=αβ(AB)2=(αβ)2(A+B)24AB=(α+β)24αβq2p24rp=b2a24cab24aca2=q24prp2D1a2=D2p2D1D2=a2p2

    Chat on WhatsApp Call Infinity Learn

      Register to Get Free Mock Test and Study Material

      +91

      Verify OTP Code (required)

      I agree to the terms and conditions and privacy policy.