Search for: MathematicsIf ey+xy=e, then the value of d2ydx2 for x=0, is If ey+xy=e, then the value of d2ydx2 for x=0, is A1eB1e2C1e3D0 Congratulations you have unlocked a coupon code of 10% INFY10 Check It Out Fill Out the Form for Expert Academic Guidance!l Grade ---Class 6Class 7Class 8Class 9Class 10Class 11Class 12 Target Exam JEENEETCBSE +91 Preferred time slot for the call ---9 am10 am11 am12 pm1 pm2 pm3 pm4 pm5 pm6 pm7 pm8pm9 pm10pm Please indicate your interest Live ClassesBooksTest SeriesSelf Learning Language ---EnglishHindiMarathiTamilTeluguMalayalam Are you a Sri Chaitanya student? NoYes Verify OTP Code (required) I agree to the terms and conditions and privacy policy. Solution:We have ey+xy=e. Differentiating w.r.t.x, we get eydydx+y+xdydx=0.....(i) Differentiating w.r.t.x, we get eyd2ydx2+ey(dydx)2+2dydx+xd2ydx2=0.....iiPutting x=0 in ey+xy=e, we get y=1Putting x=0, y=1 in (i), we get edydx+1=0⇒dydx=−1ePutting x=0, y=1, dydx=−1e in (ii), we get ed2ydx2+e⋅1e2−2e+0 ⇒d2ydx2=1e2 Related content Area of Square Area of Isosceles Triangle Pythagoras Theorem Triangle Formulae Perimeter of Triangle Formula Area Formulae Volume of Cone Formula Matrices and Determinants_mathematics Critical Points Solved Examples Type of relations_mathematics