Search for: If f(x)=ex1+ex,l1=∫f(−a)f(a) xg{x(1−x)}dx .Then the value of I2/I1, isIf f(x)=ex1+ex,l1=∫f(−a)f(a) xg{x(1−x)}dx .Then the value of I2/I1, isA-1B1/2C2D1 Register to Get Free Mock Test and Study Material +91 Verify OTP Code (required) I agree to the terms and conditions and privacy policy. Solution:We have, f(x)=ex1+ex f(−x)=e−x1+e−x=11+ex∴ f(x)+f(−x)=ex1+ex+11+ex=1⇒f(a)+f(−a)=1Now, I1=∫f(−a)f(a) xg{x(1−x)}dx …(i)Using ∫ab f(a+b−x)=∫ab f(x) and f(−a)+f(a)=1, we getI1=∫f(−a)f(a) (1−x)g{(1−x)(1−(1−x))}dx⇒ I1=∫f(−a)f(a) (1−x)g{x(1−x)}dx⇒ I1=∫f(−a)f(a) (1−x)g{x(1−x)}dx ..(ii)Adding (i) and (ii), we get2I1=∫f(−a)f(a) g{x(1−x)}dx⇒ 2I1=I2⇒I2I1=2Post navigationPrevious: ∫x2(xsinx+cosx)2dx would be equal toNext: If ∫4ex+6e−x9ex−4e−xdx=Ax+Blog9e2x−4+C, then 36(A+B)=Related content JEE Advanced 2023 NEET Rank Assurance Program | NEET Crash Course 2023 JEE Main 2023 Question Papers with Solutions JEE Main 2024 Syllabus Best Books for JEE Main 2024 JEE Advanced 2024: Exam date, Syllabus, Eligibility Criteria JEE Main 2024: Exam dates, Syllabus, Eligibility Criteria JEE 2024: Exam Date, Syllabus, Eligibility Criteria NCERT Solutions For Class 6 Maths Data Handling Exercise 9.3 JEE Crash Course – JEE Crash Course 2023