Search for: If I1=∫01 1−x50100dx,I2=∫01 1−x50101 and I2=αI1, then α equals to If I1=∫01 1−x50100dx,I2=∫01 1−x50101 and I2=αI1, then α equals to A50495050B50515050C50505051D50505049 Register to Get Free Mock Test and Study Material +91 Verify OTP Code (required) I agree to the terms and conditions and privacy policy. Solution:We have, i1=∫01 1−x50100dx and I2=∫01 1−x50101dxNow,∴=∫01 1−x50101dxI2=∫01 1−x501001−x50dx⇒I2=∫01 1−x50100dx−∫01 x501−x50100dx⇒ I2=I1+150∫01 1−x50100−50x49dx⇒ I2=I1+150∫01 x1−x50100ddx1−x50dx⇒ I2=I1+150x1−x5010110101−∫01 1−x50101101dx⇒ I2=I1−15050I2⇒ 50515050I2=I1⇒I2I1=50505051.Post navigationPrevious: ∫02 x2dx is equal toNext: If ∫1×2+2x+2dx=f(x)+C, then f(x)=Related content NEET Rank Assurance Program | NEET Crash Course 2023 JEE Main 2023 Question Papers with Solutions JEE Main 2024 Syllabus Best Books for JEE Main 2024 JEE Advanced 2024: Exam date, Syllabus, Eligibility Criteria JEE Main 2024: Exam dates, Syllabus, Eligibility Criteria JEE 2024: Exam Date, Syllabus, Eligibility Criteria NCERT Solutions For Class 6 Maths Data Handling Exercise 9.3 JEE Crash Course – JEE Crash Course 2023 NEET Crash Course – NEET Crash Course 2023