Search for: If limx→∞ 1+ax+bx22x=e2, thenIf limx→∞ 1+ax+bx22x=e2, thenAa=1,b=2Ba=2,b=1Ca=1,b∈RDa=b=1 Register to Get Free Mock Test and Study Material +91 Verify OTP Code (required) I agree to the terms and conditions and privacy policy. Solution:We have,limx→∞ 1+ax+bx22x=elimx→∞ax+bx2×2x =elimx→∞2a+2bx=e2a∴ limx→∞ 1+ax+bx22x=e2⇒e2a=e2⇒2a=2⇒a=1.Hence, a=1 and b∈Rlimx→a f(x)g(x)=limx→a f′′(x)g′′(x)Post navigationPrevious: limx→0 ∫0x tsin(10t)dtx is equal toNext: For each t∈R, let [t] be the greatest integer less than or equal to t. Then,limx→0+ x1x+2x+……+15xRelated content JEE Main 2023 Session 2 Registration to begin today JEE Main 2023 Result: Session 1 NEET 2024 JEE Advanced 2023 NEET Rank Assurance Program | NEET Crash Course 2023 JEE Main 2023 Question Papers with Solutions JEE Main 2024 Syllabus Best Books for JEE Main 2024 JEE Advanced 2024: Exam date, Syllabus, Eligibility Criteria JEE Main 2024: Exam dates, Syllabus, Eligibility Criteria