If n∈N, n>1, then value of E=a−nC1(a−1)+nC2(a−2)+…+(−1)n(a−n) nCn is

If nN, n>1, then value of E=anC1(a1)+nC2(a2)++(1)n(an) nCn is

  1. A

    a

  2. B

    0

  3. C

    a2

  4. D

    2n

    Fill Out the Form for Expert Academic Guidance!l



    +91



    Live ClassesBooksTest SeriesSelf Learning



    Verify OTP Code (required)

    I agree to the terms and conditions and privacy policy.

    Solution:

    We can write E as
    a nC0nC1+nC2+(1)n nCn+ nC1 (2)  nC2+(3) nC3(1)n(n) nCn 
       =0+F where
    F= nC1(2) nC2+(3) nC3  (1)n(n) nCn       
    We have (1+x)n=nC0+nC1x+nC2x2+nC3x3++nCnxn

    Differentiating, we get 
      n(1+x)n1=nC1+2 nC2x+3 nC3x2++n nCnxn1

    Putting x=-1, we get
              0=nC12 nC2+3 nC3(1)n1(n) nCn 0=F
    Thus,     E=0+0=0.

    Chat on WhatsApp Call Infinity Learn

      Talk to our academic expert!



      +91


      Live ClassesBooksTest SeriesSelf Learning




      Verify OTP Code (required)

      I agree to the terms and conditions and privacy policy.