Search for: If sin−1x+sin−1y+sin−1z=3π2 and f(1)=2,f(p+q)=f(p)⋅f(q),∀p,q∈R then xf(1)+yf(2)+zf(3)−(x+y+z)xf(1)+yf(2)+zf(3) is equal toIf sin−1x+sin−1y+sin−1z=3π2 and f(1)=2,f(p+q)=f(p)⋅f(q),∀p,q∈R then xf(1)+yf(2)+zf(3)−(x+y+z)xf(1)+yf(2)+zf(3) is equal toA0B1C2D3 Register to Get Free Mock Test and Study Material +91 Verify OTP Code (required) I agree to the terms and conditions and privacy policy. Solution:∵−π2≤sin−1x≤π2,−π2≤sin−1y≤π2and −π2≤sin−1z≤π2Given that sin−1x+sin−1y+sin−1z=3π2which is possible only whensin−1x=sin−1y=sin−1z=π2⇒x=y=z=1put p=q=1then, f(2)=f(1)f(1)=2⋅2=4and put p=1,q=2then f(3)=f(1)f(2)=2⋅22=8∴ xf(1)+yf(2)+zf(3)−x+y+zxf(1)+yf(2)+zf(3)=1+1+1−31+1+1=3−1=2Post navigationPrevious: If(5+26)n=I+f;n,I∈N and 0≤f<1, then I is equal to Next: If n−1Cr=k2−3nCr+1, then k is belongs toRelated content JEE Main 2023 Question Papers with Solutions JEE Main 2024 Syllabus Best Books for JEE Main 2024 JEE Advanced 2024: Exam date, Syllabus, Eligibility Criteria JEE Main 2024: Exam dates, Syllabus, Eligibility Criteria JEE 2024: Exam Date, Syllabus, Eligibility Criteria NCERT Solutions For Class 6 Maths Data Handling Exercise 9.3 JEE Crash Course – JEE Crash Course 2023 NEET Crash Course – NEET Crash Course 2023 JEE Advanced Crash Course – JEE Advanced Crash Course 2023