Search for: MathematicsIf x=4cos3θ and y=3sin2θ, then 6d2ydx2 at θ=π4 is If x=4cos3θ and y=3sin2θ, then 6d2ydx2 at θ=π4 is Fill Out the Form for Expert Academic Guidance!l Grade ---Class 6Class 7Class 8Class 9Class 10Class 11Class 12 Target Exam JEENEETCBSE +91 Preferred time slot for the call ---9 am10 am11 am12 pm1 pm2 pm3 pm4 pm5 pm6 pm7 pm8pm9 pm10pmPlease indicate your interest Live ClassesBooksTest SeriesSelf LearningLanguage ---EnglishHindiMarathiTamilTeluguMalayalamAre you a Sri Chaitanya student? NoYesVerify OTP Code (required) I agree to the terms and conditions and privacy policy. Solution:x=4cos3θ, y=3sin2θ⇒dxdθ=12cos2θ(−sinθ),dydθ=6sinθcosθdydx=dy/dθdx/dθ=6sinθcosθ−12cos2θsinθ=−12cosθ=−12secθd2ydx2=−12secθtanθdθdx=−12sinθcos2θ×−112cos2θsinθ=124cos4θ If θ=π4 than d2ydx2=124(2)4=16Related content Area of Square Area of Isosceles Triangle Pythagoras Theorem Triangle Formulae Perimeter of Triangle Formula Area Formulae Volume of Cone Formula Matrices and Determinants_mathematics Critical Points Solved Examples Type of relations_mathematics