MathematicsIf y=sin x1sin x sin 2x+1sin 2 x sin 3x+…+1sin n x sin(n+1)x then dydx=

If y=sin x1sin x sin 2x+1sin 2 x sin 3x+...+1sin n x sin(n+1)x then dydx=

  1. A

    cot x-cot(n+1)x

  2. B

    (n+1)cosec2(n+1)x-cosec2x

  3. C

    cosec2x-(n+1)cosec2(n+1)x

  4. D

    cot x+cot(n+1)x

    Fill Out the Form for Expert Academic Guidance!l



    +91



    Live ClassesBooksTest SeriesSelf Learning



    Verify OTP Code (required)

    I agree to the terms and conditions and privacy policy.

    Solution:

    The given equaiton is 

    y=sinxsinxsin2x+sinxsin3xsin2x+...+sinxsinn+1xsinnx =sin2x-xsinxsin2x+sin3x-2xsin3xsin2x+...+sinn+1x-nxsinn+1xsinnx =cotx-cot2x+cot2x-cot3x+...+cotnx-cotn+1x =cotx-cotn+1x

    Differentiate both sides 

    dydx=-cosec2x+n+1cosec2n+1x

    Chat on WhatsApp Call Infinity Learn

      Talk to our academic expert!



      +91



      Live ClassesBooksTest SeriesSelf Learning



      Verify OTP Code (required)

      I agree to the terms and conditions and privacy policy.