Let  α¯=(λ-2)a→+b→ and β¯=(4λ-2)a→+3b→ be two given vectors where vectors a→ and b¯ are non-collinear. The value of λ for which vectors a→ and β→are collinear, is 

Let  α¯=(λ-2)a+b and β¯=(4λ-2)a+3b be two 

given vectors where vectors a and b¯ are non-

collinear. The value of λ for which vectors a and β

are collinear, is 

  1. A

    -4

  2. B

    3

  3. C

    -3

  4. D

    4

    Register to Get Free Mock Test and Study Material

    +91

    Verify OTP Code (required)

    I agree to the terms and conditions and privacy policy.

    Solution:

     The given vectors are α=(λ-2)a+band 

    β=(4λ-2)a+3b

    Since, α and βare collinear.

      λ-24λ-2=133λ-6=4λ-2λ=-4

    Chat on WhatsApp Call Infinity Learn

      Register to Get Free Mock Test and Study Material

      +91

      Verify OTP Code (required)

      I agree to the terms and conditions and privacy policy.