Solution:
AD AP
So, DB PC
Again EQ || AC
BE BQ
Therefore
EA QC
… (2)
Now AD = BE given AD + DE = BE + DE EA + BD
AD BE AC BC
So DB EA DC QC
AD BQ PC QC
Let ABC be a triangle and D and E be two points on side AB such that AD = BC If DP || BC and EQ ||AC, prove PQ || AB.