Search for: Let α. and β be the roots of ax2+bx+c=0, then limx→a 1−cosax2+bx+c(x−α)2 is equal toLet α. and β be the roots of ax2+bx+c=0, then limx→a 1−cosax2+bx+c(x−α)2 is equal toA0B12(α−β)2Ca22(α−β)2D−a22(α−β)2 Register to Get Free Mock Test and Study Material +91 Verify OTP Code (required) I agree to the terms and conditions and privacy policy. Solution:It is given that α,β are roots of ax2+bx+c∴ ax2+bx+c=a(x−α)(x−β)Now, limx→α 1−cosax2+bx+c(x−α)2=2limx→α sin2ax2+bx+c2(x−α)2=2limx→α sin2a(x−α)(x−β)2(x−α)2=2limx→α sina(x−α)(x−β)22a(x−α)(x−β)2×a24(x−β)2=2(1)2×a24(α−β)2=a22(α−β)2Post navigationPrevious: If limx→0 cos4x+acos2x+bx4 is finite, then(a,b)=Next: limx→0 ex+e−x−2×21/x2 is equal toRelated content JEE Main 2023 Session 2 Registration to begin today JEE Main 2023 Result: Session 1 NEET 2024 JEE Advanced 2023 NEET Rank Assurance Program | NEET Crash Course 2023 JEE Main 2023 Question Papers with Solutions JEE Main 2024 Syllabus Best Books for JEE Main 2024 JEE Advanced 2024: Exam date, Syllabus, Eligibility Criteria JEE Main 2024: Exam dates, Syllabus, Eligibility Criteria