Search for: Let ddx(F(x))=esinxx,x>0 if ∫14 2esinx2xdx=F(k)−F(1) ), then one of the possible values of k is, Let ddx(F(x))=esinxx,x>0 if ∫14 2esinx2xdx=F(k)−F(1) ), then one of the possible values of k is, A4B8C16D32 Register to Get Free Mock Test and Study Material +91 Verify OTP Code (required) I agree to the terms and conditions and privacy policy. Solution:We have,ddx(F(x))=esinxx⇒∫esinxxdx=F(x) …(i)Now, ∫14esinx2xdx=∫14 esinx2x2⋅dx2=∫116 esinttdt, where t=x2∫142esinx2xdx=[F(t)]16=F(16)−F(1) [using (i)]hence , k=16 Post navigationPrevious: The value of ∫sinx+cosx3+sin2xdx, is Next: The value of ∫0π |cosx|dx is Related content JEE Main 2023 Question Papers with Solutions JEE Main 2024 Syllabus Best Books for JEE Main 2024 JEE Advanced 2024: Exam date, Syllabus, Eligibility Criteria JEE Main 2024: Exam dates, Syllabus, Eligibility Criteria JEE 2024: Exam Date, Syllabus, Eligibility Criteria NCERT Solutions For Class 6 Maths Data Handling Exercise 9.3 JEE Crash Course – JEE Crash Course 2023 NEET Crash Course – NEET Crash Course 2023 JEE Advanced Crash Course – JEE Advanced Crash Course 2023