Let cos⁡(α+β)=45 and let sin⁡(α−β)=513, where 0<α,β≤π4. Then tan⁡ 2α=

Let cos(α+β)=45 and let sin(αβ)=513, where 0<α,βπ4Then tan 2α=

  1. A

    19/12

  2. B

    20/7 

  3. C

    25/16 

  4. D

    56/33

    Register to Get Free Mock Test and Study Material

    +91

    Verify OTP Code (required)

    I agree to the terms and conditions and privacy policy.

    Solution:

    We have,

    cos(α+β)=45 and sin(αβ)=513 tan(α+β)=35 and tan(αβ)=512 tan2α=tan(α+β+αβ)=tan(α+β)+tan(αβ)1tan(α+β)tan(αβ) tan2α=35+5121-35×512=5633 

    Chat on WhatsApp Call Infinity Learn

      Register to Get Free Mock Test and Study Material

      +91

      Verify OTP Code (required)

      I agree to the terms and conditions and privacy policy.