Let f be a differentiable function such that 8f(x)+6f(1/x)−x=5(x≠0) and y=x2f(x) then dydx at x=1 is

# Let $f$ be differentiable function such that $8f\left(x\right)+6f\left(1/x\right)-x=5\left(x\ne 0\right)$ and $y={x}^{2}f\left(x\right)$ then $\frac{dy}{dx}$ at $x=1$ is

1. A
2. B
3. C
4. D

Register to Get Free Mock Test and Study Material

+91

Live ClassesRecorded ClassesTest SeriesSelf Learning

Verify OTP Code (required)

I agree to the terms and conditions and privacy policy.

### Solution:

Differentiating the given expression, we get

Also $\frac{dy}{dx}=2xf\left(x\right)+{x}^{2}{f}^{\mathrm{\prime }}\left(x\right)$

so,  ${\frac{dy}{dx}|}_{x=1}=2f\left(1\right)+{f}^{\mathrm{\prime }}\left(1\right)$

Putting  in the given equation, we obtain

Hence      ${\frac{dy}{dx}|}_{x=1}=2,\frac{3}{7}+\frac{1}{2}=\frac{19}{14}$

## Related content

 Distance Speed Time Formula Refractive Index Formula Mass Formula Electric Current Formula Ohm’s Law Formula Wavelength Formula Electric Power Formula Resistivity Formula Weight Formula Linear Momentum Formula

Talk to our academic expert!

+91

Live ClassesRecorded ClassesTest SeriesSelf Learning

Verify OTP Code (required)

I agree to the terms and conditions and privacy policy.