Let f(x)=limn→∞ x2n−1x2n+1 Then

Let f(x)=limnx2n1x2n+1 Then

  1. A

    f(x)=1,|x|>1    1,|x|    <1

  2. B

    f(x)=1,|x|<11,|x|>1

  3. C

    f(x) is not defined for any value of x

  4. D

    f(x)=1 for |x|=1

    Register to Get Free Mock Test and Study Material

    +91

    Verify OTP Code (required)

    I agree to the terms and conditions and privacy policy.

    Solution:

    We have,

    limnx2n=0, if |x|<11, if |x|=1, if |x|>1 f(x)=limn11x2n1+1x2n=limn1,|x|<10,|x|=11,|x|>1

    Chat on WhatsApp Call Infinity Learn

      Register to Get Free Mock Test and Study Material

      +91

      Verify OTP Code (required)

      I agree to the terms and conditions and privacy policy.