Let f(x)=(x+1)10+(x+2)10⋯+(x+50)10×10+1010 Statement-1:limx→∞ f(x)=10Statement-2:f(x)=∑r=110 ∑α=150 10Crxr−10α10−r1+10×10−1

# Let $f\left(x\right)=\frac{\left(x+1{\right)}^{10}+\left(x+2{\right)}^{10}\cdots +\left(x+50{\right)}^{10}}{{x}^{10}+{10}^{10}}$ Statement-1:$\underset{x\to \mathrm{\infty }}{lim} f\left(x\right)=10$Statement-2:$f\left(x\right)=\sum _{r=1}^{10} \sum _{\alpha =1}^{50}{ }^{10}{C}_{r}{x}^{r-10}{\alpha }^{10-r}{\left(1+{\left(\frac{10}{x}\right)}^{10}\right)}^{-1}$

1. A

STATEMENT-1 is True, STATEMENT-2 is True; STATEMENT-2 is a correct explanation for STATEMENT-1

2. B

STATEMENT-1 is True, STATEMENT-2 is True; STATEMENT-2 is NOT a correct explanation for STATEMENT-1

3. C

STATEMENT-1 is True, STATEMENT-2 is False

4. D

STATEMENT-1 is False, STATEMENT-2 is True

Fill Out the Form for Expert Academic Guidance!l

+91

Live ClassesBooksTest SeriesSelf Learning

Verify OTP Code (required)

### Solution:

$f\left(x\right)=\frac{{\left(1+\frac{1}{x}\right)}^{10}+{\left(1+\frac{2}{x}\right)}^{10}+\cdots +{\left(1+\frac{50}{x}\right)}^{10}}{1+{\left(\frac{10}{x}\right)}^{10}}$

so , $\underset{x\to \mathrm{\infty }}{lim} f\left(x\right)=\frac{1+\cdots +1}{1}$ (50 times)=50

## Related content

 Articles Worksheet for Class 6 with Answers Dilwara Temple Ascending Order and Descending Order Worksheet Class 12 Physics Chapter 7 Alternating Current MCQs Role of Coaching Institutes for NEET Droppers Unseen Passage for Class 8 English CBSE Class 7 Science Respiration in Organisms Worksheets Current Affairs Quiz with Answer in India (Nation and States) Importance of Solving Mock Tests and PYQs for NEET Droppers Breathing and Exchange of Gases MCQ Class 11 Biology

+91

Live ClassesBooksTest SeriesSelf Learning

Verify OTP Code (required)