Let f(x)=(x+1)10+(x+2)10⋯+(x+50)10×10+1010 Statement-1:limx→∞ f(x)=10Statement-2:f(x)=∑r=110 ∑α=150 10Crxr−10α10−r1+10×10−1

Let f(x)=(x+1)10+(x+2)10+(x+50)10x10+1010 

Statement-1:limxf(x)=10

Statement-2:f(x)=r=110α=15010Crxr10α10r1+10x101

  1. A

    STATEMENT-1 is True, STATEMENT-2 is True; STATEMENT-2 is a correct explanation for STATEMENT-1

  2. B

    STATEMENT-1 is True, STATEMENT-2 is True; STATEMENT-2 is NOT a correct explanation for STATEMENT-1

  3. C

    STATEMENT-1 is True, STATEMENT-2 is False

  4. D

    STATEMENT-1 is False, STATEMENT-2 is True

    Register to Get Free Mock Test and Study Material



    +91



    Live ClassesRecorded ClassesTest SeriesSelf Learning

    Verify OTP Code (required)

    I agree to the terms and conditions and privacy policy.

    Solution:

    f(x)=1+1x10+1+2x10++1+50x101+10x10

    so , limxf(x)=1++11 (50 times)=50

    Chat on WhatsApp Call Infinity Learn

      Talk to our academic expert!



      +91



      Live ClassesRecorded ClassesTest SeriesSelf Learning

      Verify OTP Code (required)

      I agree to the terms and conditions and privacy policy.