MathematicsLet gx be the inverse of the function fx and f1(x)=11+x3. Then g1(x) is equal to

Let gx be the inverse of the function fx and f1(x)=11+x3. Then g1(x) is equal to

  1. A

    11+(g(x))3

  2. B

    11+(f(x))3

  3. C

    1+(g(x))3

  4. D

    1+(f(x))3

    Fill Out the Form for Expert Academic Guidance!l



    +91



    Live ClassesBooksTest SeriesSelf Learning



    Verify OTP Code (required)

    I agree to the terms and conditions and privacy policy.

    Solution:

    Since gx is the inverse of fx, therefore f(x)=yg(y)=x

    Now, g(f(x))=1f(x), xg(f(x))=1+x3, x g(y)=1+(g(y))3

    [using f(x)=yx=g(y)g(x)=1+(g(x))3 (replacing y by x)

    Chat on WhatsApp Call Infinity Learn

      Talk to our academic expert!



      +91



      Live ClassesBooksTest SeriesSelf Learning



      Verify OTP Code (required)

      I agree to the terms and conditions and privacy policy.