Search for: Let J=∫−5−4 3−x2tan3−x2dx andK=∫−2−1 6−6x+x2tan6x−x2−6dx. Then (J+K) equals __.Let J=∫−5−4 3−x2tan3−x2dx andK=∫−2−1 6−6x+x2tan6x−x2−6dx. Then (J+K) equals __. Register to Get Free Mock Test and Study Material +91 Verify OTP Code (required) I agree to the terms and conditions and privacy policy. Solution:We have J=∫−5−4 3−x2tan3−x2dxPut (x+5)=t. ThenJ=∫01 3−(t−5)2tan3−(t−5)2dt=∫01 −22+10t−t2tan−22+10t−t2dtNow K=∫−2−1 6−6x+x2tan6x−x2−6dx.Put (x+2)=z. ThenK=∫01 6−6(z−2)+(z−2)2tan6(z−2)−(z−2)2−6dz=∫01 22−10z+z2tan−22+10z−z2dzHence, (J+K)=0Post navigationPrevious: If In=∫01 1−x5ndx,then 557I10I11 is equal to Next: The value of 5050∫01 1−x50100dx∫01 1−x50101dx __.Related content NEET Rank Assurance Program | NEET Crash Course 2023 JEE Main 2023 Question Papers with Solutions JEE Main 2024 Syllabus Best Books for JEE Main 2024 JEE Advanced 2024: Exam date, Syllabus, Eligibility Criteria JEE Main 2024: Exam dates, Syllabus, Eligibility Criteria JEE 2024: Exam Date, Syllabus, Eligibility Criteria NCERT Solutions For Class 6 Maths Data Handling Exercise 9.3 JEE Crash Course – JEE Crash Course 2023 NEET Crash Course – NEET Crash Course 2023