Let S1, S2,….be squares such that for each n≥1, the length of a side of Sn equals the length of adiagonal of Sn+1. If the length of a side of S1 is 10 cm, then the smallest value of n for which Area(Sn) <1 is

Let S1, S2,....be squares such that for each n1, the length of a side of Sn equals the length of a

diagonal of Sn+1. If the length of a side of S1 is 10 cm, then the smallest value of n for which Area

(Sn<1 is

  1. A

    7

  2. B

    8

  3. C

    9

  4. D

    10

    Register to Get Free Mock Test and Study Material



    +91



    Live ClassesRecorded ClassesTest SeriesSelf Learning

    Verify OTP Code (required)

    I agree to the terms and conditions and privacy policy.

    Solution:

    Let an denote the length of a side of Sn. We are given

    Length of a side of Sn = Length of a diagonal of Sn+1

     an=2an+1an+1an=12.

    Thus, a1, a2, a3,is a G.P. with first term 10 and common ratio 1/2.

    Therefore,

    an=10(1/2)n1

    Also, Area Sn=an2<1

    10(1/2)n12<1100<2n1

    smallest possible value of n is 8.

    Chat on WhatsApp Call Infinity Learn

      Talk to our academic expert!



      +91



      Live ClassesRecorded ClassesTest SeriesSelf Learning

      Verify OTP Code (required)

      I agree to the terms and conditions and privacy policy.