Let x>−1, then statement P(n):(1+x)n>1+nx is true for

Let x>1, then statement P(n):(1+x)n>1+nx is true for

  1. A

    all nN

  2. B

    all n>1

  3. C

    all n>1 provided x0

  4. D

    none of these

    Register to Get Free Mock Test and Study Material



    +91



    Live ClassesRecorded ClassesTest SeriesSelf Learning

    Verify OTP Code (required)

    I agree to the terms and conditions and privacy policy.

    Solution:

    For n=2,

    P(2):(1+x)2=1+2x+x2>1+2x,as x0.

    Assume that

    P(k):(1+x)k>1+kx                            (1)

    for some kN,k>1

    As x>1, multiplying both the sides of (1) by 1+x, we get

    (1+x)k+1>(1+kx)(1+x)=1+(k+1)x+kx2>1+(k+1)x

                                                                                               kx2>0

    Thus, P(k+1) is true.

    By the principle of mathematical induction P(n) is true for
    all n>1 provided x0.

    Chat on WhatsApp Call Infinity Learn

      Talk to our academic expert!



      +91



      Live ClassesRecorded ClassesTest SeriesSelf Learning

      Verify OTP Code (required)

      I agree to the terms and conditions and privacy policy.