Search for: limx→0 2|x|e|x|−|x|−|x|loge2−1xtanx is equal to limx→0 2|x|e|x|−|x|−|x|loge2−1xtanx is equal toA12(ln2)2+12(ln2)+1B(ln2)2+12(ln2)+1C(ln2)2+(ln2)+12D12(ln2)2+(ln2)+12 Register to Get Free Mock Test and Study Material +91 Verify OTP Code (required) I agree to the terms and conditions and privacy policy. Solution: limx→0 2|x|e|x|−|x|−|x|loge2−1xtanx=limx→0 (2e)|x|−|x|loge(2e)−1x2tanxx=limx→0 1+|x|loge(2e)+|x|22!loge(2e)2+…−|x|loge(2e)−1x2tanxx=limx→0 |x|22!loge(2e)2+…..x2tanxx=12!loge(2e)2=12loge2+12=12(ln2+1)2Post navigationPrevious: If limn→∞ n⋅3nn(x−2)n+n⋅3n+1−3n=13, where n∈N, then the number of integer (s) in the range of x, isNext: The value of limx→0 ex−cos2x−xx2, is Related content JEE Main 2023 Result: Session 1 NEET 2024 JEE Advanced 2023 NEET Rank Assurance Program | NEET Crash Course 2023 JEE Main 2023 Question Papers with Solutions JEE Main 2024 Syllabus Best Books for JEE Main 2024 JEE Advanced 2024: Exam date, Syllabus, Eligibility Criteria JEE Main 2024: Exam dates, Syllabus, Eligibility Criteria JEE 2024: Exam Date, Syllabus, Eligibility Criteria