Search for: limx→0 xtan2x−2xtanx(1−cos2x)2, islimx→0 xtan2x−2xtanx(1−cos2x)2, isA2B-2C12D-12 Register to Get Free Mock Test and Study Material +91 Verify OTP Code (required) I agree to the terms and conditions and privacy policy. Solution:limx→0 xtan2x−2xtanx(1−cos2x)2=limx→0 x(tan2x−2tanx)(1−cos2x)2=limx→0 2xtan3x1−tan2x(1−cos2x)2=limx→0 2tanxx31−tan2x1−cos2xx22=2×13(1−0)×4=12Post navigationPrevious: If |x|<1 then limn→∞ (1+x)1+x21+x4…1+x2n is equal to Next: limx→0 1x+2x+3x+…+nxn1/x is equal to Related content NEET Rank Assurance Program | NEET Crash Course 2023 JEE Main 2023 Question Papers with Solutions JEE Main 2024 Syllabus Best Books for JEE Main 2024 JEE Advanced 2024: Exam date, Syllabus, Eligibility Criteria JEE Main 2024: Exam dates, Syllabus, Eligibility Criteria JEE 2024: Exam Date, Syllabus, Eligibility Criteria NCERT Solutions For Class 6 Maths Data Handling Exercise 9.3 JEE Crash Course – JEE Crash Course 2023 NEET Crash Course – NEET Crash Course 2023