Search for: MathematicsMaximum value of the expression 1+sin2xcos2x4sin2xsin2x1+cos2x4sin2xsin2xcos2x1+4sin2x= Maximum value of the expression 1+sin2xcos2x4sin2xsin2x1+cos2x4sin2xsin2xcos2x1+4sin2x= A4B6C2D-2 Congratulations you have unlocked a coupon code of 10% INFY10 Check It Out Fill Out the Form for Expert Academic Guidance!l Grade ---Class 6Class 7Class 8Class 9Class 10Class 11Class 12 Target Exam JEENEETCBSE +91 Preferred time slot for the call ---9 am10 am11 am12 pm1 pm2 pm3 pm4 pm5 pm6 pm7 pm8pm9 pm10pm Please indicate your interest Live ClassesBooksTest SeriesSelf Learning Language ---EnglishHindiMarathiTamilTeluguMalayalam Are you a Sri Chaitanya student? NoYes Verify OTP Code (required) I agree to the terms and conditions and privacy policy. Solution:Let f(x)=1+sin2xcos2x4sin2xsin2x1+cos2x4sin2xsin2xcos2x1+4sin2xR2→R2−R1R3→R3−R1f(x)=1+sin2xcos2x4sin2x−110−101f(x)=1+sin2x(1)−cos2x(−1)+4sin2x(0+1)=1+sin2x+cos2x+4sin2x=1+1+4sin2x=2+4sin2xMaximum value of f(x)=2+4(1)=2+4=6 Related content Area of Square Area of Isosceles Triangle Pythagoras Theorem Triangle Formulae Perimeter of Triangle Formula Area Formulae Volume of Cone Formula Matrices and Determinants_mathematics Critical Points Solved Examples Type of relations_mathematics