MathematicsMaximum value of the expression 1+sin2⁡xcos2⁡x4sin⁡2xsin2⁡x1+cos2⁡x4sin⁡2xsin2⁡xcos2⁡x1+4sin⁡2x=

Maximum value of the expression 1+sin2xcos2x4sin2xsin2x1+cos2x4sin2xsin2xcos2x1+4sin2x=

  1. A

    4

  2. B

    6

  3. C

    2

  4. D

    -2

    Fill Out the Form for Expert Academic Guidance!l



    +91



    Live ClassesBooksTest SeriesSelf Learning



    Verify OTP Code (required)

    I agree to the terms and conditions and privacy policy.

    Solution:

    Let f(x)=1+sin2xcos2x4sin2xsin2x1+cos2x4sin2xsin2xcos2x1+4sin2xR2R2R1R3R3R1
    f(x)=1+sin2xcos2x4sin2x110101f(x)=1+sin2x(1)cos2x(1)+4sin2x(0+1)=1+sin2x+cos2x+4sin2x=1+1+4sin2x=2+4sin2x
    Maximum value of f(x)=2+4(1)=2+4=6

    Chat on WhatsApp Call Infinity Learn

      Talk to our academic expert!



      +91



      Live ClassesBooksTest SeriesSelf Learning



      Verify OTP Code (required)

      I agree to the terms and conditions and privacy policy.