Search for: MathematicsMaximum value of the expression 1+sin2xcos2x4sin2xsin2x1+cos2x4sin2xsin2xcos2x1+4sin2x=Maximum value of the expression 1+sin2xcos2x4sin2xsin2x1+cos2x4sin2xsin2xcos2x1+4sin2x=A4B6C2D-2 Fill Out the Form for Expert Academic Guidance!l Grade ---Class 6Class 7Class 8Class 9Class 10Class 11Class 12 Target Exam JEENEETCBSE +91 Preferred time slot for the call ---9 am10 am11 am12 pm1 pm2 pm3 pm4 pm5 pm6 pm7 pm8pm9 pm10pmPlease indicate your interest Live ClassesBooksTest SeriesSelf LearningLanguage ---EnglishHindiMarathiTamilTeluguMalayalamAre you a Sri Chaitanya student? NoYesVerify OTP Code (required) I agree to the terms and conditions and privacy policy. Solution:Applying C1→C1+C2⇒∆=2cos2x4sin2x21+cos2x4sin2x1cos2x1+4sin2xApplying R2→R2-R1 and R3→R3-R1⇒∆=2cos2x4sin2x010-101 ⇒∆=2(1-0)-cos2x(0+0)+4sin2x(0+1) ⇒∆=2-0+4sin2x ⇒∆=2+4sin2x= ⇒maximum value of ∆=6 Related content Area of Square Area of Isosceles Triangle Pythagoras Theorem Triangle Formulae Perimeter of Triangle Formula Area Formulae Volume of Cone Formula Matrices and Determinants_mathematics Critical Points Solved Examples Type of relations_mathematics