MathematicsMaximum value of the expression 1+sin2xcos2x4sin2xsin2x1+cos2x4sin2xsin2xcos2x1+4sin2x=

Maximum value of the expression 1+sin2xcos2x4sin2xsin2x1+cos2x4sin2xsin2xcos2x1+4sin2x=

  1. A

    4

  2. B

    6

  3. C

    2

  4. D

    -2

    Fill Out the Form for Expert Academic Guidance!l



    +91



    Live ClassesBooksTest SeriesSelf Learning



    Verify OTP Code (required)

    I agree to the terms and conditions and privacy policy.

    Solution:

    Applying C1C1+C2=2cos2x4sin2x21+cos2x4sin2x1cos2x1+4sin2x

    Applying R2R2-R1 and R3R3-R1

    =2cos2x4sin2x010-101 =2(1-0)-cos2x(0+0)+4sin2x(0+1) =2-0+4sin2x =2+4sin2x= maximum value of =6 

    Chat on WhatsApp Call Infinity Learn

      Talk to our academic expert!



      +91



      Live ClassesBooksTest SeriesSelf Learning



      Verify OTP Code (required)

      I agree to the terms and conditions and privacy policy.