Search for: ∫{tanx+cotx}dx is equal to ∫{tanx+cotx}dx is equal to Asin−1(sinx−cosx)+CB2sin−1(sinx−cosx)+CC2cos−1(sinx−cosx)+CDnone of these Register to Get Free Mock Test and Study Material +91 Verify OTP Code (required) I agree to the terms and conditions and privacy policy. Solution:We have,I=∫{tanx+cotx}dx=∫sinx+cosxsinxcosxdx⇒ I=2∫sinx+cosx2sinxcosxdx⇒ I=2∫11−(sinx−cosx)2d(−cosx+sinx)⇒ I=2sin−1(sinx−cosx)+C.Post navigationPrevious: The integral ∫π/6π/3 tan3xsin23x2sec2xsin23x+3tanxsin6xdx is equal to Next: If α=∫01 e9x+3tan−1x12+9×21+x2dx, where tan−1x takes only principal values, then the value of loge|1+α|−3π4, isRelated content NEET Rank Assurance Program | NEET Crash Course 2023 JEE Main 2023 Question Papers with Solutions JEE Main 2024 Syllabus Best Books for JEE Main 2024 JEE Advanced 2024: Exam date, Syllabus, Eligibility Criteria JEE Main 2024: Exam dates, Syllabus, Eligibility Criteria JEE 2024: Exam Date, Syllabus, Eligibility Criteria NCERT Solutions For Class 6 Maths Data Handling Exercise 9.3 JEE Crash Course – JEE Crash Course 2023 NEET Crash Course – NEET Crash Course 2023