The angle between two straight lines is α. One line has direction cosines 12,12,12 and the other line has direction ratios 0,1,2. Then tanα=

The angle between two straight lines is α. One line has direction cosines 12,12,12 and the other line has direction ratios 0,1,2. Then tanα=

  1. A

    325

  2. B

    1125

  3. C

    113

  4. D

    3411

    Fill Out the Form for Expert Academic Guidance!l



    +91



    Live ClassesBooksTest SeriesSelf Learning



    Verify OTP Code (required)

    I agree to the terms and conditions and privacy policy.

    Solution:

    If θ is the acute angle between two lines having direction ratios a1,b1,c1and a2,b2,c2

     thencosθ=a1a2+b1b2+c1c2a12+b12+c12a22+b22+c22 

    Given α is angle between two lines having direction ratios 12,12,12 and0,1,2

    Hence,

    cosα=120+121+122102+12+22=325

    Use right angled triangle, to get the value of tanα

    Therefore,tanα=113

     

    Chat on WhatsApp Call Infinity Learn

      Talk to our academic expert!



      +91



      Live ClassesBooksTest SeriesSelf Learning



      Verify OTP Code (required)

      I agree to the terms and conditions and privacy policy.