Search for: The integral ∫2x−3×2+x+12 dx is equal to The integral ∫2x−3x2+x+12 dx is equal to A−1x2+x+1−1633tan−12x+13−432x+1x2+x+1+CB−1x2+x+1−1633tan−12x-13+432x-1x2+x+1+CC12x2+x+1−(2x+1)2x2+x+12+CD14x2+x+1+23tan−1(2x+1)+C Register to Get Free Mock Test and Study Material +91 Verify OTP Code (required) I agree to the terms and conditions and privacy policy. Solution:We have, I=∫2x−3x2+x+12dx=∫(2x+1)−4x2+x+12dx⇒I=∫2x+1x2+x+12dx−4∫1(x+1/2)2+(3/2)22dx I=−1x2+x+1−4I1 where I1=∫1[(x+1/2)2+(3/2)2]2dx Putting x+1/2=(3/2) tanθ in I1, We get I1=∫3/2sec2θdθ[(3/2)tanθ)]2+(3/2)22⇒ I1=833∫cos2θdθ=833∫1+cos2θ2dθ⇒ I1=433{θ+12sin2θ}+C⇒ I1=433tan−12x+13+122tanθ1+tan2θ+C⇒ I1=433tan−12x+13+342x+1x2+x+1+C∴ I=−1x2+x+1−1633tan−12x+13−432x+1x2+x+1+CPost navigationPrevious: If ∫ex2−x2(1−x)1−x2dx=μex1+x1−xλ+C then the value of 2(λ+μ) is Next: The value of ∫01 1−x1+xdx, is Related content NEET Rank Assurance Program | NEET Crash Course 2023 JEE Main 2023 Question Papers with Solutions JEE Main 2024 Syllabus Best Books for JEE Main 2024 JEE Advanced 2024: Exam date, Syllabus, Eligibility Criteria JEE Main 2024: Exam dates, Syllabus, Eligibility Criteria JEE 2024: Exam Date, Syllabus, Eligibility Criteria NCERT Solutions For Class 6 Maths Data Handling Exercise 9.3 JEE Crash Course – JEE Crash Course 2023 NEET Crash Course – NEET Crash Course 2023