Search for: The integral ∫sec2x(secx+tanx)9/2dx equals (for some arbitrary constant K)The integral ∫sec2x(secx+tanx)9/2dx equals (for some arbitrary constant K)A−1(secx+tanx)11/2111−17(secx+tanx)2+KB1(secx+tanx)11/2111−17(secx+tanx)2+KC−1(secx+tanx)11/2111+17(secx+tanx)2+KD1(secx+tanx)11/2111+17(secx+tanx)2+K Register to Get Free Mock Test and Study Material +91 Verify OTP Code (required) I agree to the terms and conditions and privacy policy. Solution:We have,I=∫sec2x(secx+tanx)9/2dxLet secx+tanx=t.. Then, secx−tanx=1/t and,secx(secx+tanx)dx=dt∴ sccxdx=1tdt and, secx=12t+1t∴ I=12∫1tt+1tt9/2dt=12∫1t9/2+1t13/2dt⇒ I=−17t7/2−111t11/2+k⇒ I=−1t11/2t27+111+k⇒ I=-1(secx+tanx)11/2111+17(secx+tanx)2+kPost navigationPrevious: If f(x)=∫x2+sin2x1+x2sec2xdx and f(0)=0, then f(1) equals:Next: The integral ∫0π1+4sin2x2-4sinx2 dx equalsRelated content JEE Main 2023 Question Papers with Solutions JEE Main 2024 Syllabus Best Books for JEE Main 2024 JEE Advanced 2024: Exam date, Syllabus, Eligibility Criteria JEE Main 2024: Exam dates, Syllabus, Eligibility Criteria JEE 2024: Exam Date, Syllabus, Eligibility Criteria NCERT Solutions For Class 6 Maths Data Handling Exercise 9.3 JEE Crash Course – JEE Crash Course 2023 NEET Crash Course – NEET Crash Course 2023 JEE Advanced Crash Course – JEE Advanced Crash Course 2023