The set S={1,2,3,…12} is to be partitioned into three sets A, B, C of equal size. Thus A∪B∪C=S, A∩B=B∩C=C∩A=ϕ The number of ways to partition S is

The set S={1,2,3,12} is to be partitioned into three sets A, B, C of equal size. Thus ABC=S, AB=BC=CA=ϕ The number of ways to partition S is

  1. A

    12!3!(4!)3

  2. B

    12!3!(3!)3

  3. C

    12!(4!)3

  4. D

    12!(3!)4

    Register to Get Free Mock Test and Study Material



    +91



    Live ClassesRecorded ClassesTest SeriesSelf Learning

    Verify OTP Code (required)

    I agree to the terms and conditions and privacy policy.

    Solution:

    Each of the three sets A, B, C contains exactly  4elements.
    Thus, the number of ways of partitioning the set S is

    13! 12C4 8C4 4C4=13!12!4!8!×8!4!4!(1)=12!3!(4!)3

    Chat on WhatsApp Call Infinity Learn

      Talk to our academic expert!



      +91



      Live ClassesRecorded ClassesTest SeriesSelf Learning

      Verify OTP Code (required)

      I agree to the terms and conditions and privacy policy.