Search for: The solution of the differential equation, dydx=(x−y)2, when y(1)=1 is The solution of the differential equation, dydx=(x−y)2, when y(1)=1 is A−loge1+x−y1−x+y=x+y−2Bloge2−x2−y=x−yC−logc1−x+y1+x−y=2(x−1)Dlogc2−y2−x=2(y−1) Register to Get Free Mock Test and Study Material +91 Verify OTP Code (required) I agree to the terms and conditions and privacy policy. Solution:Given, dydx=(x−y)2 Let, x−y=t⇒dydx=1−dtdx ∴ 1−dtdx=t2∫dt1−t2=∫dx⇒12loge1+t1−t=x+c12loge1+x−y1−x+y=x+CGiven, y(1)=1∴12loge(1)=C+1⇒C=−1∴ loge1+x−y1−x+y=2(x−1)⇒−loge1−x+y1+x−y=2(x−1)Post navigationPrevious: Let f be integrable over [0, a] for any real a. If we define I1=∫0π/2 cosθ fsinθ+cos2θdθ and I2=∫0π/2 sin2θ fsinθ+cos2θdθ, then Next: Aset A has 3 elements and another set B has 6 elements. Then Related content NEET Rank Assurance Program | NEET Crash Course 2023 JEE Main 2023 Question Papers with Solutions JEE Main 2024 Syllabus Best Books for JEE Main 2024 JEE Advanced 2024: Exam date, Syllabus, Eligibility Criteria JEE Main 2024: Exam dates, Syllabus, Eligibility Criteria JEE 2024: Exam Date, Syllabus, Eligibility Criteria NCERT Solutions For Class 6 Maths Data Handling Exercise 9.3 JEE Crash Course – JEE Crash Course 2023 NEET Crash Course – NEET Crash Course 2023