The triangle whose vertices are A3,−1,2,Bλ,−1,1,C1,1,−2, is a right-angled triangle. Then the sum of all possible integral values of λ is

The triangle whose vertices are A3,1,2,Bλ,1,1,C1,1,2, is a right-angled triangle. Then the sum of all possible integral values of λ is

  1. A

    3

  2. B

    -3

  3. C

    -2

  4. D

    2

    Fill Out the Form for Expert Academic Guidance!l



    +91



    Live ClassesBooksTest SeriesSelf Learning



    Verify OTP Code (required)

    I agree to the terms and conditions and privacy policy.

    Solution:

    Direction ratios of  AB¯,BC¯,CA¯are respectively are 3λ,0,1,λ1,2,3,2,2,4

    In right angle triangle, right angle may occur at any Bvertex   AB¯,BC¯

    If the right angle is at the vertex then the dot product of  is zero. 

    3λλ1+3=03λ3λ2+λ+3=0λ24λ=0λλ4=0            

    It givesλ=0,4

    If the right angle is at the vertex C, then the dot product of   AC¯,BC¯ is zero

     23λ412=02λ2+16=02λ+14=0λ=7            

    It gives  λ=7

     If the right angle is at the vertex Athen the dot product of   AC¯,AB¯ is zero

           23λ+2041=06+2λ4=02λ=10λ=5      

    It gives λ=5

    Therefore, sum of all the possible values of  λ is   2

    Chat on WhatsApp Call Infinity Learn

      Talk to our academic expert!



      +91



      Live ClassesBooksTest SeriesSelf Learning



      Verify OTP Code (required)

      I agree to the terms and conditions and privacy policy.