The value of  limx→0 x2sin⁡xtan⁡x , where [⋅] denotes the greatest integer function, is

The value of  limx0x2sinxtanx , where [] denotes the greatest integer function, is

  1. A

    0

  2. B

    1

  3. C

    limit does not exist 

  4. D

    -1

    Register to Get Free Mock Test and Study Material

    +91

    Verify OTP Code (required)

    I agree to the terms and conditions and privacy policy.

    Solution:

    sinx < x < tanx
    xtanx<1,  xsin x>1 x2sin x tan x<1 limx0x2sin x tan x=0

    Chat on WhatsApp Call Infinity Learn

      Register to Get Free Mock Test and Study Material

      +91

      Verify OTP Code (required)

      I agree to the terms and conditions and privacy policy.