Search for: The value of the integral ∫0π xsinx1+cos2xdx, is The value of the integral ∫0π xsinx1+cos2xdx, is Aπ22Bπ24Cπ28Dπ216 Register to Get Free Mock Test and Study Material +91 Verify OTP Code (required) I agree to the terms and conditions and privacy policy. Solution:Let I=∫0π xsinx1+cos2xdxThen,⇒ I=∫0π (π−x)sin(π−x)1−cos2(π−x)dx⇒ I=∫0π (π−x)sinx1+cos2xdxAdding (i) and (ii), we get2π=π∫0π sinx1+cos2xdx⇒2I=−π∫1−1 11+t2dt, where t=cosx⇒2I=−πtan−1t1−1=−π−π4−π4=π22⇒ I=π24Post navigationPrevious: The value of ∫−4−5 e(x+5)2dx+3∫1/32/3 e9(x−2/3)2dx , isNext: If ∫1×2+1×2+4dx=A tan−1x+B tan−1x2+C, then A +2B Related content JEE Main 2023 Session 2 Registration to begin today JEE Main 2023 Result: Session 1 NEET 2024 JEE Advanced 2023 NEET Rank Assurance Program | NEET Crash Course 2023 JEE Main 2023 Question Papers with Solutions JEE Main 2024 Syllabus Best Books for JEE Main 2024 JEE Advanced 2024: Exam date, Syllabus, Eligibility Criteria JEE Main 2024: Exam dates, Syllabus, Eligibility Criteria