The value of limx→0 11xsin⁡x+21sin⁡xxwhere [x] is the greatest integer less than or equal to x is

The value of limx011xsinx+21sinxx

where [x] is the greatest integer less than or equal to x is

  1. A

    32

  2. B

    31

  3. C

    11

  4. D

    21

    Register to Get Free Mock Test and Study Material



    +91



    Live ClassesRecorded ClassesTest SeriesSelf Learning

    Verify OTP Code (required)

    I agree to the terms and conditions and privacy policy.

    Solution:

    Since x>sinx, for x>0 and limx0+xsinx=1

    so  11xsinx11 as x0+ but 11xsinx>11 Thus

    11xsinx=11 for value x0+ Similarly

    21sinxx21 as x0+ but 2021sinxx<21

    21sinxx=20 Hence.

    limx0+11xsinx+21sinxx=31

    Similarly x<sinx for x<0, so 11xsinx=11

    as x→∣0 and 21sinxx=20 as x0 Thus

    limx011xsinx+21sinxx=31

    Chat on WhatsApp Call Infinity Learn

      Talk to our academic expert!



      +91



      Live ClassesRecorded ClassesTest SeriesSelf Learning

      Verify OTP Code (required)

      I agree to the terms and conditions and privacy policy.