Search for: The value of limx→∞ 2×1/2+3×1/3+4×1/4+…nx1/n(2x−3)1/2+(2x−3)1/3+…+(2x−3)1/n isThe value of limx→∞ 2x1/2+3x1/3+4x1/4+…nx1/n(2x−3)1/2+(2x−3)1/3+…+(2x−3)1/n isA0B2C2D13 Register to Get Free Mock Test and Study Material +91 Verify OTP Code (required) I agree to the terms and conditions and privacy policy. Solution:Letl=limx→∞ 2x1/2+3x1/3+4x1/4+…+nx1/n(2x−3)1/2+(2x−3)1/3+…+(2x−3)1/nThen, l=limh→0 2h−1/2+3h−1/3+4h−1/4+…+nh−1/n(2−3h)1/2h−1/2+(2−3h)1/3h−1/3+…+(2−3h)1/nh−1/n, where h=1x.⇒ l=limh→0 2+3h12−13+4h12−14+…+nh1 12 n(2−3h)2+(2−3h)13h12−13+…+(2−3h)nh12−1n⇒ l=22=2Post navigationPrevious: limx→∞ x2+x+1−x2+1=Next: limx→0 2|x|e|x|−|x|−|x|loge2−1xtanx is equal toRelated content NEET Rank Assurance Program | NEET Crash Course 2023 JEE Main 2023 Question Papers with Solutions JEE Main 2024 Syllabus Best Books for JEE Main 2024 JEE Advanced 2024: Exam date, Syllabus, Eligibility Criteria JEE Main 2024: Exam dates, Syllabus, Eligibility Criteria JEE 2024: Exam Date, Syllabus, Eligibility Criteria NCERT Solutions For Class 6 Maths Data Handling Exercise 9.3 JEE Crash Course – JEE Crash Course 2023 NEET Crash Course – NEET Crash Course 2023