Search for: ∫xcosx+12x3esinx+x2dx∫xcosx+12x3esinx+x2dxAlogtan-1xesinx+cBlog2xesinx+1-12xesinx+1+1+cClog2xesinx+cDnone of these Register to Get Free Mock Test and Study Material +91 Verify OTP Code (required) I agree to the terms and conditions and privacy policy. Solution:I=∫xcosx+12x3esinx+x2dx=∫xcosx+1x2xesinx+1 dxPut 2xesinx+1=t⇒(2x(esinx)cosx+esinx(2))dx=dt⇒2esinx[xcosx+1]dx=dt⇒2xesinxxcosx+1xdx=dt⇒(t−1)xcosx+1xdx=dt⇒xcosx+1xdx=dt(t−1)Now I=∫1(t−1)tdtt=z2⇒dt=2z dzI=∫2z(z2−1)(z)dz=212lnz−1z+1+cwhere z=t=2xesinx+1I=ln2xesinx+1−12xesinx+1+1+cPost navigationPrevious: The integral ∫1(x−1)3(x+2)54 dx is equal to Next: The number of one one functions that can be defined from A=1,2,3,4,5 into B=a,b,c,d isRelated content JEE Main 2023 Result: Session 1 NEET 2024 JEE Advanced 2023 NEET Rank Assurance Program | NEET Crash Course 2023 JEE Main 2023 Question Papers with Solutions JEE Main 2024 Syllabus Best Books for JEE Main 2024 JEE Advanced 2024: Exam date, Syllabus, Eligibility Criteria JEE Main 2024: Exam dates, Syllabus, Eligibility Criteria JEE 2024: Exam Date, Syllabus, Eligibility Criteria