Search for: xn=a0+a1(1+x)+a2(1+x)2+…+an(1+x)n=b0+b1(1−x)+b2(1−x)2+…+bn(1−x)n then for n = 101,a50,b50 equals:xn=a0+a1(1+x)+a2(1+x)2+…+an(1+x)n=b0+b1(1−x)+b2(1−x)2+…+bn(1−x)n then for n = 101,a50,b50 equals:A−101C50,101C50B 101C50,−101C50C−101C50,−101C50D 101C50,101C50 Register to Get Free Mock Test and Study Material Grade ---Class 6Class 7Class 8Class 9Class 10Class 11Class 12 Target Exam JEENEETCBSE +91 Preferred time slot for the call ---9 am10 am11 am12 pm1 pm2 pm3 pm4 pm5 pm6 pm7 pm8pm9 pm10pmPlease indicate your interest Live ClassesRecorded ClassesTest SeriesSelf LearningVerify OTP Code (required) I agree to the terms and conditions and privacy policy. Solution:xn=[(1+x)−1]n=[1−(1−x)]n=∑k=0n nCk(1+x)n−k(−1)k=∑k=0n nCk(−1)k(1−x)k∴ak = coefficient of (1+x)k in ∑k=0n nCk(1+x)n−k(−1)k=(−1)n−knCn−k=(−1)n−knCkand bk=nCk(−1)kFor n=101,k=51 we geta51,b51= 101C51,−101C51Related content USA Full Form – United States of America NRC Full Form – National Register of Citizens Distance Speed Time Formula Refractive Index Formula Mass Formula Electric Current Formula Ohm’s Law Formula Wavelength Formula Electric Power Formula Resistivity Formula